Oscillations in linear difference equations with variable coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear fractional differential equations with variable coefficients

This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...

متن کامل

Global stability for nonlinear difference equations with variable coefficients

Note that for f(x) = e − 1, (1.1) becomes a logistic equation with piecewise constant arguments. Definition 1.1 The zero solution of (1.1) is said to be uniformly stable, if for any ε > 0 and nonnegative integer n0, there is a δ = δ(ε) > 0 such that max{|x(n0 − j)| | j = −k,−k + 1, · · · , 0} < δ, implies that the solution {x(n)}n=0 of (1.1) satisfies |x(n)| < ε, n = n0, n0 + 1, · · · . Definit...

متن کامل

Oscillations of Advanced Difference Equations with Variable Arguments

Consider the first-order advanced difference equation of the form ∇x(n)− p(n)x(μ(n)) = 0, n ≥ 1, [∆x(n)− p(n)x(ν(n)) = 0, n ≥ 0], where ∇ denotes the backward difference operator ∇x(n) = x(n) − x(n − 1), ∆ denotes the forward difference operator ∆x(n) = x(n+ 1)− x(n), {p(n)} is a sequence of nonnegative real numbers, and {μ(n)} [{ν(n)}] is a sequence of positive integers such that μ(n) ≥ n+ 1 f...

متن کامل

Taylor collocation method for systems of high-order linear differential–difference equations with variable coefficients

Universit .2012.07.0 Abstract A Taylor collocation method has been developed to solve the systems of high-order linear differential–difference equations in terms of the Taylor polynomials. Using the Taylor collocation points, this method transforms differential–difference equation systems and the given conditions to matrix equations with unknown Taylor coefficients. By means of the obtained mat...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis

سال: 1991

ISSN: 1048-9533,1687-2177

DOI: 10.1155/s1048953391000199